
MODEL SOLUTION

AS -4016

B.Te ch (First Semester) course –A

INTRODUCTION TO COMPUTER PROGRAMMING

ANS 1 :

i. Electrically Erasable Programmable Read Only Memory

ii. Four Generation

iii. c

iv. 8

v. High Level

vi. 8 bytes

vii. a is seven

viii. 1 10 2 9 3 8 4 7 5 6

ix. *

x. Lower bound

ANS 2: characteristic of first and second generation of computer

The main features of First Generation are:

 Vacuum tube technology

 Unreliable

 Supported Machine language only

 Very costly

 Generate lot of heat

 Slow Input/Output device

 Huge size

 Need of A.C.

 Non-portable

 Consumed lot of electricity

Some computers of this generation were:

 ENIAC

 EDVAC

 UNIVAC

The main features of Second Generation are:

 Use of transistors

 Reliable as compared to First generation computers

 Smaller size as compared to First generation computers

 Generate less heat as compared to First generation computers

 Consumed less electricity as compared to First generation computers

 Faster than first generation computers

 Still very costly

 A.C. needed

 Support machine and assembly languages

Some computers of this generation were:

 IBM 1620

 IBM 7094

ANS 3 : difference between analog and digital computer :

ANS 4

I Virtual Memory : It is an illusion given to user that it has very large memory to execute any

program of any size , it is implemented using Demand Paging in which the physical memory is

divided into equally-sized pages. The memory addressed by a process is also divided into logical

pages of the same size. When a process references a memory address, the memory manager

fetches from disk the page that includes the referenced address, and places it in a vacant physical

page in the RAM. Subsequent references within that logical page are routed to the physical page.

When the process references an address from another logical page, it too is fetched into a vacant

physical page and becomes the target of subsequent similar references.

 Analog Digital

1 Analog signal is a continuous signal

which represents physical

measurements.

Digital signals are discrete time signals

generated by digital modulation.

2 Uses continuous range of values to

represent information

Uses discrete or discontinuous values to

represent information

3 accuracy of computation is less Accuracy of computation is more

4 Less programming effort More programming effort

5 Used in limited no. of application Used in unlimited no. of application

6 Carry out computation of physical

quantity

Carry out computation of numerical digits

7 Precision is limited Precision is high

http://searchmobilecomputing.techtarget.com/definition/memory

II Secondary Memory : Also known as auxiliary storage, secondary storage, secondary

memory or external memory, is used to store a large amount of data at lesser cost per byte than

primary memory. They are two orders of magnitude less expensive than primary storage. In

addition, secondary storage does not lose the data when the device is powered down—it is non-

volatile. Another difference from primary storage in that it is not directly accessible by the CPU,

they are accessed via the input/output channels. The most common form of auxiliary memory

devices used in consumer systems is flash memory, optical discs, and magnetic disks.

ANS 5

Difference between compiler and interpreter

Compiler Interpreter

Compiler take entire program as input Interpreter take single instruction as input

Intermediate object code is generated No intermediate object code is generated

Memory requirement is more Memory requirement is less

Program need not to compile every time Program need to compile every time

Error are displayed after entire program is

checked

Error are displayed after every instruction

Fast Slow

Exe: c compiler Exe : basic

ANS 6

I Operating System : It is an software which acts as an intermediate between user and hardware.

Main objective are :

1 effective utilization of all resources

2 make computer user friendly

Function are :

 Process Management— The process management activities handled by the OS are—(1)

control access to shared resources like file, memory, I/O and CPU, (2) control execution of

applications, (3) create, execute and delete a process (system process or user process), (4) cancel

or resume a process (5) schedule a process, and (6) synchronization, communication and

deadlock handling for processes.

 Functions of OS

http://en.wikipedia.org/wiki/Primary_memory

 Memory Management— The activities of memory management handled by OS are—(1)

allocate memory, (2) free memory, (3) re-allocate memory to a program when a used block is

freed, and (4) keep track of memory usage.

 File Management— The file management tasks include—(1) create and delete both files and

directories, (2) provide access to files, (3) allocate space for files, (4) keep back-up of files, and

(5) secure files.

 Device Management— The device management tasks handled by OS are—(1) open, close

and write device drivers, and (2) communicate, control and monitor the device driver.

 Protection and Security— OS protects the resources of system. User authentication, file

attributes like read, write, encryption, and back-up of data are used by OS to provide basic

protection.

User Interface or Command Interpreter— Operating system provides an interface between

the computer user and the computer hardware. The user interface is a set of commands or a

graphical user interface via which the user interacts with the applications and the hardware.

II Assembler :

Programming language processor that translates an assembly language program (the source

program) to the machine language program (the object program) executable by a computer.

It is so called because in addition to translating it also assembles the machine language program in main

memory of the computer and make it ready for execution.

Assembler is system software supplied by computer manufacturer.

ANS 7

(a)

(A2B2)16 = (41650)10

(41650)10=(121262)8

(b)

(111101.1110111)2=(75.734)8

ANS 8

1. START

2. Enter number N

3. count=0, i=1

4. if i <=N

4.1 If N%i== 0

4.1.1 Count=count+1

4.2 i=i+1

4.2 repeat step 4.1 and 4.2 till step 4 fails

5 If count == 2

5.1 display given number is prime otherwise

5.2 display given number is not prime

6 stop

ANS 9 Different symbol of flow chart

Start/End Symbol

The terminator symbol marks the starting or ending point of the system. It usually contains the

word "Start" or "End."

Action or Process Symbol

A box can represent a single step ("add two cups of flour"), or and entire sub-process ("make

bread") within a larger process.

Decision Symbol

A decision or branching point. Lines representing different decisions emerge from different

points of the diamond.

Input/Output Symbol

Represents material or information entering or leaving the system, such as customer order (input)

or a product (output).

Connector Symbol

Indicates that the flow continues where a matching symbol (containing the same letter) has been

placed.

ANS 10

i. Library files in C: These are the files which the compiler uses in order to define the functions

which have been used in the program and had been declared inside the header file.Like, printf()

has its complete definition ,like how it will work etc. in an I/O library! So, the compiler uses that

library to get the machine code for printf. This file are there in machine language and store with

.lib extension. Library file is binary file so it is very difficult to read and modify.

ii. characteristic of algorithem :

Characteristics of Algorithms:

While designing an algorithm as a solution to a given problem, we must take care of the following five

important characteristics of an algorithm.

Finiteness:An algorithm must terminate after a finite number of steps and further each step must be

executable in finite amount of time. In order to establish a sequence of steps as an algorithm, it should be

established that it terminates (in finite number of steps) on all allowed inputs.

Definiteness (no ambiguity): Each steps of an algorithm must be precisely defined; the action to be

carried out must be rigorously and unambiguously specified for each case.

Inputs: An algorithm has zero or more but only finite, number of inputs.

Output: An algorithm has one or more outputs. The requirement of at least one output is obviously

essential, because, otherwise we cannot know the answer/ solution provided by the algorithm. The outputs

have specific relation to the inputs, where the relation is defined by the algorithm.

Effectiveness: An algorithm should be effective. This means that each of the operation to be performed in

an algorithm must be sufficiently basic that it can, in principle, be done exactly and in a finite length of

time, by person using pencil and paper. It may be noted that the ‘FINITENESS’ condition is a special

case of ‘EFFECTIVENESS’. If a sequence of steps is not finite, then it cannot be effective also.

ANS 11

The syntax for a switch statement in C programming language is as follows:

switch(expression){

 case constant-expression :

 statement(s);

 break; /* optional */

 case constant-expression :

 statement(s);

 break; /* optional */

 /* you can have any number of case statements */

 default : /* Optional */

 statement(s);

}

The following rules apply to a switch statement:

 The expression used in a switch statement must have an integral or enumerated type, or

be of a class type in which the class has a single conversion function to an integral or

enumerated type.

 You can have any number of case statements within a switch. Each case is followed by

the value to be compared to and a colon.

 The constant-expression for a case must be the same data type as the variable in the

switch, and it must be a constant or a literal.

 When the variable being switched on is equal to a case, the statements following that case

will execute until a break statement is reached.

 When a break statement is reached, the switch terminates, and the flow of control jumps

to the next line following the switch statement.

 Not every case needs to contain a break. If no break appears, the flow of control will fall

through to subsequent cases until a break is reached.

 A switch statement can have an optional default case, which must appear at the end of

the switch. The default case can be used for performing a task when none of the cases is

true. No break is needed in the default case.

Example :

#include <stdio.h>

int main ()

{

 /* local variable definition */

 char grade = 'B';

 switch(grade)

 {

 case 'A' :

 printf("Excellent!\n");

 break;

 case 'B' :

 case 'C' :

 printf("Well done\n");

 break;

 case 'D' :

 printf("You passed\n");

 break;

 case 'F' :

 printf("Better try again\n");

 break;

 default :

 printf("Invalid grade\n");

 }

 printf("Your grade is %c\n", grade);

 return 0;

}

ANS 12 : Program to check palindrome

#include <stdio.h>

 Void main()

 {

int n, reverse=0, rem,temp;

printf("Enter an integer: ");

scanf("%d", &n);

 temp=n;

while(temp!=0)

{ rem=temp%10;

reverse=reverse*10+rem;

temp/=10;

 } /* Checking if number entered by user and it's reverse number is equal. */

 if(reverse==n)

 printf("%d is a palindrome.",n);

else

 printf("%d is not a palindrome.",n);

 return 0;

}

ANS 13 : Program to find factorial of given number

#include <stdio.h>

int main()

{

 int n, count;

 long int factorial=1;

printf("Enter an integer: ");

scanf("%d",&n);

if (n< 0)

{

printf("Error!!! Factorial of negative number doesn't exist.");

else

{

for(count=1;count<=n;++count) /* for loop terminates if count>n */

{ factorial*=count; /* factorial=factorial*count */

}

printf("Factorial = %d",factorial);

}

return 0;

 }

ANS 14

A pointer is a variable whose value is the address of another variable, i.e., direct address of the

memory location. Like any variable or constant, you must declare a pointer before you can use it

to store any variable address. The general form of a pointer variable declaration is:

type *var-name;

Here, type is the pointer's base type; it must be a valid C data type and var-name is the name of

the pointer variable. The asterisk * you used to declare a pointer is the same asterisk that you use

for multiplication. However, in this statement the asterisk is being used to designate a variable as

a pointer. Following are the valid pointer declaration:

int *ip; /* pointer to an integer */

double *dp; /* pointer to a double */

float *fp; /* pointer to a float */

char *ch /* pointer to a character */

The actual data type of the value of all pointers, whether integer, float, character, or otherwise, is

the same, a long hexadecimal number that represents a memory address. The only difference

between pointers of different data types is the data type of the variable or constant that the

pointer points to.

#include <stdio.h>

int main ()

{

 int var = 20; /* actual variable declaration */

 int *ip; /* pointer variable declaration */

 ip = &var; /* store address of var in pointer variable*/

 printf("Address of var variable: %x\n", &var);

 /* address stored in pointer variable */

 printf("Address stored in ip variable: %x\n", ip);

 /* access the value using the pointer */

 printf("Value of *ip variable: %d\n", *ip);

 return 0;

}

ANS 15 Program to find smallest among three numbers

#include<stdio.h>
#include<conio.h>

Void main()
{
 int a = 0, b = 0, c = 0;
 int minimum = 0;
 printf("\n Enter the first number: ");
 scanf("%d",&a);
 printf(" Enter the second number: ");
 scanf("%d",&b);
 printf(" Enter the third number: ");
 scanf("%d",&c);
 minimum = Minimum(a,b,c);
 printf("\n\t\t\tThe smallest number is: %d",minimum);
 getch();
 return 0;
}

int Minimum(int a, int b, int c)
{
 int minimum = 0;
 if (a < b) //the first number is smaller than the second one
 {
 if (a < c) //the first number is also smaller than the third
 one
 {
 minimum = a;
 }
 else//the first number is larger than the third one
 {
 minimum = c;
 }
 }
 else//the first number is larger than the second one
 {
 if (b < c) //the second number is smaller than the third one
 {
 minimum = b;
 }
 else//the second number is larger than the third one

 {
 minimum = c;
 }
 }
 return minimum;
}

ANS 16: program to swap two value using c all by reference

#include <stdio.h>

void swap(int*, int*);

int main()

{

 int x, y;

 printf("Enter the value of x and y\n");

 scanf("%d%d",&x,&y);

 printf("Before Swapping\nx = %d\ny = %d\n", x, y);

 swap(&x, &y);

 printf("After Swapping\nx = %d\ny = %d\n", x, y);

 return 0;

}

void swap(int *a, int *b)

{

 int temp;

 temp = *b;

 *b = *a;

 *a = temp;

}

